INTRODUCTION À LA GÉOLOCALISATION

Séance 1

Contenus

GPS, Galileo

Capacités attendues

Décrire le principe de fonctionnement de la géolocalisation.

Activité

Découvrir le principe de la géolocalisation en manipulant des ressources de géométrie dans l'espace.

Note d'intention

Cette activité a pour objectif de rappeler le principe de repérage sur la Terre et de faire découvrir le fonctionnement de la géolocalisation à partir d'une modélisation de trois satellites.

Séance1: Présentation des activités

Première partie - repérage sur la Terre

I. Vidéo

Visionner les vidéos ci – dessous de la chaine YouTube Unisciel

II. Mise en pratique

Pour cela nous allons utiliser l'application Geogebra.

Si cette application n'est pas installée sur vos ordinateurs, vous devez la télécharger et l'installer.

Pour windows: https://download.geogebra.org/package/win-autoupdate

Pour MacOs: Dans le Mac apple store.

Utilisation en ligne: https://www.geogebra.org/classic?lang=fr

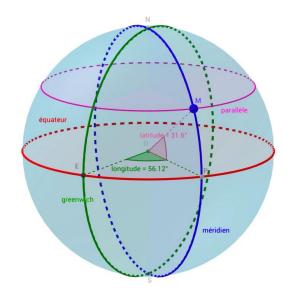
Afin de repérer tout point de la Terre, on utilise deux cercles de référence : l'équateur et le méridien de Greenwich.

Chaque point M de la Terre peut alors être repéré en coordonnées géographiques par :

- sa longitude, angle entre le méridien de Greenwich et le méridien passant par M
- Sa latitude, angle entre l'équateur et le parallèle passant par M.

Afin que cette représentation soit unique, il faut préciser si la latitude est Nord ou Sud (en fonction de l'appartenance à un des deux hémisphères) et si la longitude est Est ou Ouest suivant la situation du point M par rapport au méridien de Greenwich.

Sur l'image ci-contre, on dit que M a une latitude de 31,6°N et une longitude de 56,12°E.


Ouvrer à l'aide de GeoGebra le fichier villes.ggb

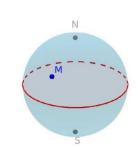
En déplaçant à l'aide de la souris le point « mobile » M, retrouvez les coordonnées géographiques de chacune des villes du fichier en complétant le tableau ci-après.

Compléter également les longitudes et latitudes en précisant E/O et N/S.

Notez bien qu'il est difficile d'obtenir exactement les coordonnées du tableau en superposant le point « mobile » M sur les différentes villes, mais en observant les latitudes et longitudes affichées, on y arrive facilement.

Villes	Latitude	Longitude
	51,5°	0°
	48,9°	2,3°
	40,4°	3,7°
	40,6°	116,4°
	39,9°	74,1°
	56,8°	37,7°
	0°	79°
	34°	18,5°

SNT	Localisation	Cartographie	
	33,5°	70,7°	
	34°	151,1°	
	41,3°	174,8°	
	59,9°	10,8°	
	36,8°	10,2°	
	1°	100,4°	


Seconde partie - usage de satellites et principe du GPS

 Maintenant que le repérage d'un point de la surface est défini, il faut définir une technique pour attribuer des coordonnées à un point de la surface.

Mobilité

• Un récepteur GPS à la surface de la Terre capte les signaux émis par trois satellites S₁, S₂ et S₃ et calcule les différences de temps en secondes, entre son horloge interne et les horloges atomiques des satellites. Cette faible différence va permettre de déterminer la distance du récepteur à chacun des satellites.

• L'objectif est de positionner le point mobile M correctement et de retrouver dans **quelle ville** du **tableau précédent** (*partie une*) le récepteur GPS se situe.

Pour cela, vous travaillerez avec le fichier satellites.ggb dans lequel :

- La sphère « Terre » a pour rayon 1,6 (échelle utilisée pour simplifier, au lieu de 6400 km) ;
- trois points S₁, S₂ et S₃, représentent des satellites du réseau GPS.
 Ils sont sur une sphère « orbite » à 20200 km d'altitude donc à ______ km du centre de la Terre soit sur une sphère orbite de rayon dans GeoGebra.
- remplir le tableau, en admettant que la vitesse de la lumière c est de 300 000 km/s

Rappel
$$vitesse = \frac{distance}{temps}$$
 Donc distance =

Satellite	S1	S2	S3
Différence de temps (s)	0,067500000	0,072233333	0,081533333
Distance (km)			
Rayon pour GeoGebra			

Créez alors dans GeoGebra:

• la sphère «sphere 1» de centre S₁ et de rayon ______;

- la sphère «sphere 2» de centre S₂ et de rayon
- le cercle «cercle₁₋₂»intersection de «sphere 1» et «sphere 2».

choisir cette icone

Conseil pour la suite : masquez la sphère «sphere 1».

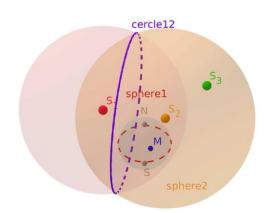
Créez ensuite :

- la sphère «sphere 3» de centre S₃ et de rayon ______;
- le cercle «cercle₂₋₃» intersection de «sphere 2» et «sphere 3»; (Masquer les sphères «sphere 2» et «sphere 3»)
- les points d'intersection des cercles «cercle₁₋₂» et «cercle₂₋₃».

(Masquer les cercles «cercle₁₋₂» et «cercle₂₋₃».)

Si vous ne vous êtes pas trompés, l'un des deux points est sur la surface de la Terre!

Déplacer le point « mobile » M pour trouver ses coordonnées (à afficher dans la barre latérale), il s'agit de la ville ______.


Troisième partie - Galiléo

Video

Regarder la vidéo ci-dessous sur Galiléo.

Expliquer les différences entre les systèmes GPS et Galiléo.

Mobilité